結論
CSVを DataFrame に変換し、調整後終値を付加することはできた。しかし、凡ミスが1点だけあり、修正が必要。
Python のソースコード
import sys import re import dill import jpbizday import pandas as pd import numpy as np from bs4 import BeautifulSoup from typing import List from datetime import datetime, date from dateutil.parser import parse def get_adj_rate(paths_to_html: List[str]) -> pd.DataFrame: ''' 与えたHTMLファイルから、終値調整比を作成して、DFで返す。 Parameters --------------------- path_to_html: List[str] 相対パスor絶対パス Returns --------------------- dataframe: pd.DataFrame ''' def _convert_to_ratio(nl: str) -> float: before, after = re.split('[→:]', nl.replace('株', '')) return float(after) / float(before) def _html2df(path_to_html: str) -> pd.DataFrame: html = open(path_to_html).read() soup = BeautifulSoup(html, 'html.parser') table = soup.find('table', {'class': 'tbl01'}) rows = table.findAll('tr') csv = [ [cell.get_text() for cell in row.findAll(['td', 'th'])] for row in rows ] df = pd.DataFrame(csv, columns=csv.pop(0)) \ .rename(columns={'銘柄コード': 'code', # 扱いやすいように半角にしておく '銘柄名': 'name', '併合比率': 'rate', '割当比率': 'rate', '権利付最終日': 'from'}) return df def _adj_rates(df_in_desc: pd.DataFrame) -> list: ''' Parameters ---------------------- df_in_desc: pd.DataFrame 日時降順でソートし与えること。 ''' adj_rates_in_each_codes: dict = {} if sys.version_info.major == 3 and sys.version_info.minor >= 8: pass # 動作未検証: # return [adj_rates_in_each_codes[code] := adj_rates_in_each_codes.get(code, 1.0) / rate # for code, rate in df_in_desc[['code', 'rate']].values] else: def calc_adj_rates(code: str, rate: float): adj_rates_in_each_codes[code] = adj_rates_in_each_codes.get(code, 1.0) / rate return adj_rates_in_each_codes[code] return [calc_adj_rates(code, rate) for code, rate in df_in_desc[['code', 'rate']].values] def _reverse(df: pd.DataFrame) -> pd.DataFrame: # https://stackoverflow.com/a/20444256 return df.iloc[::-1] dfs = pd.concat(_html2df(path_to_html) for path_to_html in paths_to_html) \ .sort_values(['code', 'from'], ascending=False) dfs['rate'] = dfs['rate'].apply(_convert_to_ratio) dfs['adj_rate'] = _adj_rates(dfs) dfs['adj_rate'] = dfs['adj_rate'].astype(np.float64) dfs['date'] = dfs['from'].apply(three_separated_digits_to_date) #lambda x: date(*map(lambda y: int(y), x.split('/')))) return _reverse(dfs)[['code', 'name', 'date', 'rate', 'adj_rate']] def save_as_dill(df: pd.DataFrame, path_to_dill: str='adj_rates.dill'): dill.dump(adj_rate_df, open(path_to_dill, 'wb')) def load_from_dill(path_to_dill: str='adj_rates.dill') -> pd.DataFrame: return dill.load(open(path_to_dill, 'rb')) def three_separated_digits_to_date(date_str: str) -> datetime.date: ''' YYYY-MM-DD や YYYY/MM/DD や 'YYYY MM DD' のstrをパースして、dateで返す。 ''' return date(*map(lambda x: int(x), re.split('[-/ ]', date_str)[0:3])) def hist_data(code: str, year: str) -> pd.DataFrame: ''' 銘柄コード、年を指定して、CSVを読み込み、DFを返す。 ''' filepath = f'/content/drive/MyDrive/Project/kabu-plus/japan-stock-prices-2_{year}_{code}.csv' csv = pd.read_csv(filepath, encoding='shift_jis') columns = {'SC': 'code', '名称': 'name', '市場': 'market', '業種': 'industry', \ '日時': 'date', '株価': 'close', '始値': 'open', '高値': 'high', '安値': 'low', '出来高': 'volumes'} csv = csv.rename(columns=columns) csv['date'] = csv['date'].apply(three_separated_digits_to_date) return csv.loc[:, columns.values()] def hist_data_with_adj_close(code: str, year: str, adj_rate_df: pd.DataFrame) -> pd.DataFrame: ''' 銘柄コード、年、終値調整用比のDFから、調整後終値付きのDFを返す。 ''' bizdays = pd.DataFrame({'date': jpbizday.year_bizdays(year)}).set_index('date') adj_rate_for_current_stock: pd.DataFrame = adj_rate_df[adj_rate_df['code'] == code] ret = bizdays.merge(adj_rate_for_current_stock, \ on='date', how='left').fillna(method='ffill').fillna(1.0).set_index('date') adj = ret.loc[:, ['adj_rate']] hist = hist_data(code, year) hist = hist.merge(adj, on='date', how='left') latest_rate = hist.iloc[-1]['adj_rate'] hist['adj_close'] = hist['close'] * (latest_rate / hist['adj_rate']) hist = hist.set_index('date') return hist from IPython.display import display pd.set_option('display.max_rows', 500) adj_rate_df = get_adj_rate(['/content/drive/MyDrive/Project/kabu-plus/heigou.html', \ '/content/drive/MyDrive/Project/kabu-plus/bunkatsu.html']) year = 2020 codes = ['9143'] for code in codes: display(hist_data_with_adj_close(code, year, adj_rate_df))
どこがうまくいっていないのか
時間がないので詳細を省くが、明らかに10月28日の調整後終値蛾おかしい。
この銘柄の場合、10月28日の場が閉まった後、株式1株が2株に分割されるので、正しくは10月28日の終値ではなく、29日の終値から分割後の比率を適用した方が良さそうだ。